博客
关于我
【算法】————5、快速排序
阅读量:172 次
发布时间:2019-02-28

本文共 1543 字,大约阅读时间需要 5 分钟。

快速排序是一种高效的排序算法,以分治法为核心思想。其基本原理是通过选择一个基准值(pivot),将数组分为两部分:一部分元素小于基准值,另一部分元素大于基准值。随后递归对这两部分分别进行排序,最终达到整个数组有序。

快速排序的核心操作是分区(partition),即将数组划分为两部分。一旦完成分区,基准值就位于中间位置。接着对左右两部分递归进行排序。

代码实现

以下是快速排序的两种实现方式:

JavaScript实现

function quickSort(array, left, right) {    if (array.constructor !== Array || typeof left !== 'number' || typeof right !== 'number') {        return '输入错误';    }    if (left >= right) {        return array;    }    const pivot = array[right];    let i = left;    while (i < right && array[i] <= pivot) {        i++;    }    [array[left], array[i]] = [array[i], array[left]];    return quickSort(array, left, i - 1).concat(        [pivot],        quickSort(array, i + 1, right)    );}

Java实现

public class QuickSort {    public static void sort(int[] array) {        sort(array, 0, array.length - 1);    }    private static void sort(int[] array, int low, int high) {        if (low >= high) {            return;        }        int pivot = array[high];        while (high >= low && array[high] <= pivot) {            high--;        }        array[low] = array[high];        array[high] = pivot;        sort(array, low, high - 1);        sort(array, high + 1, high);    }}

性能与复杂度

快速排序的时间复杂度在大多数情况下为O(n log n),但在极端情况下(如数组已排序)会退化为O(n²)。其空间复杂度在最好情况下为O(log n),但在最坏情况下可能达到O(n²)。

为了提升性能,建议在每次划分时选择中间位置的元素作为基准值,这种方法被称为“三者取中”法。这样可以有效降低最坏情况下的时间复杂度。

优化方法

  • 选择中间位置的元素作为基准值:通过选择数组中间位置的元素作为基准值,可以减少递归深度,提高性能。
  • 对短数组优先排序:在每次划分后,先对较短的子数组进行排序,以减少递归深度。
  • 多次优化基准选择方法:除了中间位置的元素,还可以考虑其他基准选择策略,如基于数值的中位数等,进一步提升性能。
  • 通过上述优化方法,快速排序的时间复杂度可以得到显著提升,使其在各种场景下都能保持较高的效率。

    转载地址:http://bvwj.baihongyu.com/

    你可能感兴趣的文章
    NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增删改数据分发及删除数据实时同步_通过分页解决变更记录过大问题_02----大数据之Nifi工作笔记0054
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
    查看>>
    NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
    查看>>
    Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
    查看>>
    NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
    查看>>
    NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
    查看>>
    NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
    查看>>
    NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
    查看>>
    NIFI集群_内存溢出_CPU占用100%修复_GC overhead limit exceeded_NIFI: out of memory error ---大数据之Nifi工作笔记0017
    查看>>
    NIFI集群_队列Queue中数据无法清空_清除队列数据报错_无法删除queue_解决_集群中机器交替重启删除---大数据之Nifi工作笔记0061
    查看>>
    NIH发布包含10600张CT图像数据库 为AI算法测试铺路
    查看>>
    Nim教程【十二】
    查看>>
    Nim游戏
    查看>>
    NIO ByteBuffer实现原理
    查看>>
    Nio ByteBuffer组件读写指针切换原理与常用方法
    查看>>
    NIO Selector实现原理
    查看>>
    nio 中channel和buffer的基本使用
    查看>>
    NIO基于UDP协议的网络编程
    查看>>
    NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
    查看>>